
CASPT 2018

Maximum Robust Train Path for an Additional Train
Inserted in an Existing Railway Timetable

Fredrik Ljunggren · Kristian Persson ·
Anders Peterson · Christiane Schmidt

Abstract We present an algorithm to insert a train path in an existing railway
timetable close to operation, when we want to affect the existing (passenger)
traffic as little as possible. Thus, we consider all other trains as fixed, and
aim for a resulting train path that maximizes the bottleneck robustness. Our
algorithm is based on a graph formulation of the problem and uses a variant
of Dijkstra’s algorithm.

We present an extensive experimental evaluation of our algorithm for the
Swedish railway stretch from Malmö to Hallsberg. Moreover, we analyze the
size of our constructed graph.

Keywords Railway timetabling · Robust train path · Bottleneck train path ·
Network algorithm · Freight transportation

1 Introduction

Over the last decades, both passenger traffic and freight traffic volumes in Swe-
den increased—from 1996 to 2016 by 82% (from about 7000 to 12800 passenger
kilometers) and by 23% (from about 55 to about 68 million tonne-kilometres),
respectively, see [14, 18, 19]. In all of Europe, freight traffic volume increases,
and while the volume transported via railway within the EU has stagnated over
the last years, see [5], the European commission sees the potential to revital-
ize rail freight [3]: road congestion and the high oil price make road transport

Fredrik Ljunggren
Communications and Transport Systems, ITN, Linköping University, Norrköping, Sweden.
Current affiliation: Trafikverket, Stockholm, Sweden, fredrik.ljunggren@trafikverket.se

Kristian Persson
Communications and Transport Systems, ITN, Linköping University, Norrköping, Sweden.
Current affiliation: Sweco, Stockholm, Sweden, kristian.persson@sweco.se

Anders Peterson, Christiane Schmidt
Communications and Transport Systems, ITN, Linköping University, Norrköping, Sweden,
{anders.peterson, christiane.schmidt}@liu.se

more expensive, railway transport is much safer, and increasing environmen-
tal concerns favor railway over road traffic. On the other hand, today’s wagon
load traffic is ineffective and marshalling complicates the transport—these
problems need to be alleviated to comply with a political vision of increased
freight traffic volumes. Already with the current traffic, railway infrastructure
is often overloaded. This is particularly true for marshalling yards: trains that
are already completed occupy highly demanded space until their departure.
To free this capacity, the freight operator and the infrastructure manager (IM)
often agree in their goal to depart early. Today, such a request is typically an-
swered manually by looking a few stations ahead, and if the completed freight
train will not interrupt operations on this limited considered stretch, an ear-
lier departure will be permitted. This procedure hardly takes into account the
already congested rail network, where freight traffic interacts with passenger
traffic with much higher requirements on punctuality.

To make sure both that the existing (passenger) traffic is not affected by
the train path of the freight train and that the freight train actually obtains
a feasible train path to its destination, it is essential to optimize the process.

In this paper, we propose an algorithm that computes a maximum robust
train path for inserting an additional train (at a time). This algorithm might
be used for a freight train in the scenario described above, with the objective
to influence the already scheduled trains as little as possible. Moreover, it may
also be used for special passenger trains, which need to be added, but where
the insertion follows the same objective of not disturbing existing trains. We
assume that all other trains are fixed, that is, their train paths may not be
altered. In general, several optimality criteria could be considered: we could
aim for the earliest possible arrival time of the inserted train, or the shortest
possible runtime of the train between the starting and end station, etc.

1.1 Roadmap

In the remainder of this section we present related work, Section 2 gives neces-
sary notation. We present an algorithm to compute the maximum bottleneck
robust train path for the inserted freight train in Section 3. In Section 4 we
present detailed experiments for the Swedish railway stretch between Malmö
and Hallsberg for our algorithm and analyze its runtime in Section 5. We give
an improvement on the actual path selection of our algorithm in Section 6,
before we conclude in Section 7.

1.2 Related Work

Timetabling is a problem that has been extensively studied, in the majority
a new time table, or a larger part of it, is constructed from scratch, see e.g.
Hansen and Pachl [9], Liebchen [13], or Törnquist [17] for an overview.

Various authors also considered adding a new train to an existing timetable,
amongst others Burdett and Kozan [1]. Flier et al. [7] (see also [6]) present

a shortest path model using a time-expanded graph, which integrates linear
regression models based on extensive historical delay data, that gives Pareto
optimal train paths w.r.t. travel time and risk of delay.

Ingolotti et al. [10] consider adding new trains to a heterogeneous, heav-
ily loaded railway network, and aim to minimize the traversal time for each
additional train.

Cacchiani et al. [2] also consider the problem of inserting a single freight
train into an existing schedule of fixed passenger trains. They assume that
the operator specifies an ideal time table that the IM can modify, which also
includes the use of a different path. Cacchiani et al. aim to add the maximum
number of new freight trains, such that their time table is as close as possible
to the ideal one. To do so, they use a heuristic algorithm based on a Lagrangian
relaxation of an Integer Linear Program (ILP).

Robustness might be defined in various ways, cp. Kroon et al. [12]. If we
assume delays to be uniformly distributed, our objective function is valid, see
Goerigk and Schöbel [8].

2 Notation and Preliminaries

Freight Train Insertion Problem (FTI):
Given: A freight train ϕ; a starting station s0 and an end station sM ; a
desired route for ϕ from s0 to sM , given by a sequence of stations Sϕ =
(s0, s1, . . . , sM), when clear from content, we only refer to the stations by
0, . . . ,M ; time windows ws = [was , w

d
s] for earliest arrival and latest departure

of ϕ at station s for all, or some of, stations s ∈ Sϕ ; the train-specific running
times ti,i+1 for train ϕ from station i to i+1 ∀i ∈ {0, . . . ,M−1}; the timetable
of all trains in the set T : all trains that run in [wa0 − ε1, sdM + ε2], where εi is
defined such that the trains that depart before or arrive after a possible path
for ϕ at any station are included; the required safety distance cτ,ϕ,s (sometimes
referred to as headway with a certain buffer or clearance time) between any
other train τ and train ϕ at station s; and an objective function F .

Remarks: In this paper, we define the train-specific running times by the
trains’ respective maximum speed and some driving margin, i.e., we do not
include the option of letting trains run slower. For s = 0 time window ws
describes all possible departure times from the origin, and for s = M the time
window describes all possible arrival times at the destination. A time window
at an intermediate station may also be given, e.g., due to staff schedule or
wagon coupling/uncoupling.
Find: A train path for ϕ given by arrival times aϕ,s and departure times dϕ,s
for all stations in Sϕ within the time windows ws = [was , w

d
s] ∀s ∈ Sϕ, that

meets the distances cτ,ϕ,s∀τ ∈ T ,∀s ∈ S, and the ti,i+1 ∀i ∈ {0, . . . ,M − 1},
and optimizes F .
In this paper, we have F = robustness.

3 Maximum Bottleneck Robust Train Path

In this section, we describe how we compute a maximum robust train path for
a freight train close to operation, given that the train paths of all other trains
are fixed. That is, we solve FTI with the objective to maximize the robustness.
In a first step, we transform our problem to an equivalent graph problem, see
Section 3.1. We then show that we can use a variant of Dijkstra’s algorithm
to compute the maximum robust train path, see Section 3.2.

3.1 From Timetable to Input Graph

We generate a graph with a set of vertices, Vs, for each station, where a vertex
represents a feasible departure interval at that station. We insert inter-station
edges, where the robustness of an edge is always determined by the earliest
and latest possible departure from the vertex at its originating station. That
is, an edge, representing a feasible train path from station s to s + 1 gets
assigned a weight of the time difference between earliest and latest departure
from station s. As we assume linear train paths, the minimum robustness will
always be assumed at a station, and for any path (selected by edges) the edge
weights will reflect the robustness intervals along the complete train path.
Moreover, we introduce intra-station edges that represent waiting at a station
for ϕ, which is important to allow overtaking, with robustness of infinity, as
the robustness of any train path is not limited by waiting at a station. The
vertices and edges define our graph as G = (V,E) with V = ∪Ms=0Vs.

In the following, we give a formal description of our input graph creation:
We generate a set of vertices Vs for each station s ∈ Sϕ. Let τk, τk+1 ∈ T be
two trains that depart from s consecutively. We add a vertex to Vs that repre-
sents the gap between τk and τk+1 if

(
dτk+1,s − dτk,s

)
≥
(
cτk+1,ϕ,s + cτk,ϕ,s

)
, if(

(aτk+1,s+1 − cτk+1,ϕ,s − ts,s+1) ≥ (aτk,s+1 + cτk,ϕ,s − ts,s+1)
)
, and if this gap

falls in the feasible time window at station s, see Figure 1(a). That is, in case
the time gap between the two trains is large enough to accommodate a depar-
ture for train ϕ. The earliest departure time for ϕ for this gap, De

s,τk,τk+1
, is

given by

De
s,τk,τk+1

= max{dτk,s + cτk,ϕ,s, aτk,s+1 + cτk,ϕ,s − ts,s+1, w
a
s}, (1)

the latest departure time for ϕ for this gap, D`
s,τk,τk+1

, is given by

D`
s,τk,τk+1

= min{dτk+1,s − cτk+1,ϕ,s, aτk+1,s+1 − cτk+1,ϕ,s+1 − ts,s+1, w
d
s}. (2)

A possible departure time for train ϕ is not only determined by τk, τk+1

departing from s, but also by trains arriving at station s, see Figure 1(b) for
an illustration of the following description. If we simply consider the trains
that run between stations s and s+ 1, the interval for possible departures for
the vertex we introduced is given by the pink interval in Figure 1(b); however,
departing in-between trains from station s − 1 we might not actually arrive

(a)

(b) (c)

Fig. 1 (a) Two stations, s and s+ 1, are shown as horizontal black lines, time is depicted
along the x-axis. Two existing, consecutive trains, τk and τk+1, are shown in blue, the safety
distances (depending on the station and the trains) in green, and the feasible time window
on station s in gray. The earliest departure and the latest departure time for ϕ (shown in
red) on s is the maximum of the three points in time marked in yellow and the minimum
of the three points in time marked in magenta, respectively. (b)/(c) Three stations, s − 1,
s and s+ 1, are shown as horizontal black lines, time is depicted along the x-axis. Existing
trains are shown in blue, the safety distances in green, earliest departure times for inserted
trains in red. (b) Possible departure intervals at station s as defined by the arrival times
from station s−1. (c) Earliest departure times from different stations imply different earliest
departure times from consecutive stations.

early enough at station s to allow for a departure in any point in the pink
interval. If we depart between the first and second blue train from station
s− 1, only departures in the violet interval are possible, if we depart between
the second and third blue train from station s−1, only departures in the light
pink interval are possible—if we depart before the blue train to the right. On
the other hand, we need to keep the pink interval, as an earlier departure is
possible, in case our train ϕ arrives at station s already before the left blue
train, and gets passed at s before departing. Hence, in this case we need three
vertices with the appropriate departure intervals.

Similarly, due to train heterogeneity, the earliest possible departure of ϕ
from different stations implies different earliest departure times from consec-
utive stations, see Figure 1(c), where three different departure intervals are
defined. We add new vertices with adapted intervals for departure iteratively,
from the first to the last station.

Thus, for each vertex v in Vs−1 (let this represent a departure between
trains τk and τk+1), we define the earliest arrival at s as Aev,s = De

s−1,τk,τk+1
+

ts−1,s, and a new earliest departure time from station s as De′

s,τk,τk+1
=

max{Aev,s, dτk,s + cτk,ϕ,s, aτk,s+1 + cτk,ϕ,s − ts,s+1, w
a
s}. We add vertices and

edges, the robustness of an edge is always determined by the earliest and latest
departure from the vertex at its originating station (we distinguish whether a
sidetrack is available for overtaking):

E = ∅
IF De′

s,τk,τk+1
≤ D`

s,τk,τk+1

IF there exists a vertex w ∈ Vs with departure interval [De′

s,τk,τk+1
, D`

s,τk,τk+1
]

Add an edge e from v to w to E.
Set the robustness of e: re = D`

s−1,τk,τk+1
−De

s−1,τk,τk+1
.

ELSE
Create a new vertex wn ∈ Vs, add an edge e from v to wn to E.
Set the robustness of e: re = D`

s−1,τk,τk+1
−De

s−1,τk,τk+1
.

The interval departure times for wn are De′

s,τk,τk+1
, D`

s,τk,τk+1
.

ELSE
IF There is a sidetrack available at s− 1 in [De

s−1,τk,τk+1
, D`

s−1,τk,τk+1
]

Let vnext be the successor vertex from v on s− 1.
Add an edge e from v to vnext to E.
Set the robustness of e: re = D`

s−1,τk,τk+1
−De

s−1,τk,τk+1
.

The final step already introduced some intra-station edges, that is, edges
for which both endpoints are on the same station (both in Vs−1). We introduce
further intra-station edges to E, these always represent waiting at a station
for ϕ, which is important to allow overtaking. The robustness of these edges is
set to infinity (re =∞), as the robustness of any train path is not limited by
waiting at a station. As intra-station edges represent waiting for overtaking,
we may not add intra-station edges for stations without sidings or we may
only add them if a siding is available at a specific station and time. We can
now define our graph as G = (V,E) with V = ∪Ms=0Vs.

Finally, we apply a postprocessing step to G and iteratively delete all ver-
tices with either indegree zero (a vertex that cannot be reached) or outdegree
zero (a vertex that cannot be left), as these cannot be part of any path from
s0 to sM .

3.2 Algorithm for Bottleneck Train Path

Given the graph defined in Subsection 3.1, we want to find a path from the first
vertex on station s0 to the last vertex on station sM . Any such path would be
feasible, but we do not only aim for a feasible path, but for an optimal path.
In this paper, we define the optimum as the maximum robustness, that is, we
want to solve FTI with F = robustness. Thus, we want to find a feasible path
that maximizes the temporal distance to neighboring trains in the timetable.
This translates to finding a maximum bottleneck path: only the smallest time
interval to the neighboring trains on the complete path defines the robustness.
This problem is also known as the maximum capacity route problem, see [15],
or the widest path problem, and can be solved by a variant of Dijkstra’s shortest
path algorithm [4]; the pseudocode is given in Algorithm 1.

4 Experimental Study: Malmö–Hallsberg

We test our method on the Swedish railway stretch between Malmö and Halls-
berg, see Figure 2. It has a length of 447 km and covers 76 stations. Between

Algorithm 1: Maximum Bottleneck Path

INPUT : Directed graph G, edge weights c : E(G)→ R+, start vertex s ∈ V (G).
OUTPUT: Maximum bottleneck path from s to all vertices v ∈ V (G) and their

value.
1 More precisely: ∀v ∈ V (G):
2 r(v) - the value of a maximum bottleneck s-v-path.
3 p(v) - the predecessor of v on a maximum bottleneck s-v-path.
4 1. Set r(s) :=∞, r(v) := 0 ∀v ∈ V (G) \ {s}, R := ∅.
5 2. Find a vertex v ∈ V (G) \R with r(v) = maxw∈V (G)\R r(w).

6 3. Set R := R ∪ {v}.
7 4. for ∀w ∈ V (G) \R with (v, w) ∈ E(G) do
8 if (r(w) < min{r(v), c((v, w))} then
9 Set r(w) = min{r(v), c((v, w))}.

10 p(w) = v.

11 5. if R 6= V (G) then
12 THEN GOTO 2

13 We

Fig. 2 Map of the Swedish railway stretch, with a selection of all stations marked, between
Malmö and Hallsberg, single-track is marked in pink. (Source of figures: trafikverket.se)

the first and the 65th station (400 km), it is double-track, while the last 11
stations are covered by single-track railway.

The studied railway stretch is part of the Scandinavian–Mediterranean
freight rail corridor, and connects continental Europe to Hallsberg, the largest

Table 1 Number of no-wait, single and multiple sidetrack stations.

double-track station single-track staion

no-wait station 49 4
single sidetrack 8 4

multiple sidetrack 9 2

marshalling yard in Scandinavia; substretches are, for example, considered in
Khoshniyat et al. [11] and Solinen et al. [16], and references therein.

Both the number of trains and the heterogeneity of these trains on the
stretch contribute to congestion problems. According to Trafikverket, the Swe-
dish Transport Administration, the capacity is used to more than 80% between
Malmö and Hässleholm, 61−80% between Hässleholm and Tran̊as, and below
61% between Tran̊as and Mjölby. Between Mjölby and Hallsberg, the double-
track stretch’s capacity is used below 61%, the single track stretch’s capacity
is used to more than 80% (both when considering a 24-hour and the most
congested 2-hour period during the day). Here, Trafikverket uses the capacity
model suggested by UIC [20].

Some of the stations along the complete stretch have additional sidetracks
that enable overtaking, but not all of these are suitable to use in our case. For
our algorithm, a station is considered to have a sidetrack, if:

1. The complete track is electrified.
2. It is possible to both enter and leave the sidetrack without changing direc-

tion.
3. The siding is to the left of the main tracks in case the adjacent sections

are double-track (a sidetrack to the right would require the train to cross
the track of trains running in the opposite direction, which is difficult in a
congested environment and we do not consider it here).

A station that does not fulfill these criteria does not allow ϕ to overtake other
trains (with sufficiently long scheduled stop) or to be overtaken by other trains,
we mark it as a no-wait-station. Moreover, we distinguish by the number of
sidetracks. We make a simplified classification: stations with exactly one track
matching the criteria, where a train can wait if no other train occupies the
track, are called single sidetrack stations; and stations with more than one
track matching the criteria, are called multiple sidetrack stations. Table 1
shows how many of the 76 stations fall into which class. We assume multiple
sidetrack stations to have enough capacity, but check the availability for single
sidetrack stations.

The remainder of this Section is organized as follows: we present our base
scenario in Subsection 4.1, experiments with varied time windows in Subsec-
tion 4.2, experiments with different train types in Subsection 4.3, and experi-
ments with different number of total train departures in Subsection 4.4.

4.1 Base Scenario

For our first set of experiments, we set the following parameters:

– Historical train data used: Tuesday, February 24, 2015 (a representative
weekday)

– Train type: GR421410, a freight train with a maximum weight of 1400
tons, a maximum speed of 100km/h, and multiple locomotives of type Rc4

– Earliest allowed departure time from Malmö freight terminal: 25200 sec-
onds, 07:00 AM

– Latest allowed departure time from Malmö freight terminal: 47763 seconds,
01:16 PM

– Latest allowed arrival time to Hallsberg marshalling yard: 64800 seconds,
06:00 PM

– Critical distance: cτ,ϕ,s = 180 seconds ∀τ ∈ T ,∀s ∈ Sϕ

The uninterrupted travel time for our chosen train type from Malmö to
Hallsberg is 4 hours 44 minutes. On February 24, 2015, 394 unique trains ran
along at least one section of the route, altogether they constituted 3830 train
departures from all stations. (Each train is counted for all stations along this
stretch that it passes.) Table 2 gives the number of train departures for each
of the 76 stations between Malmö and Hallsberg on February 24, 2015.

The train path we obtain in this base scenario is shown in Figure 3: red and
light blue give the earliest and latest possible running time for ϕ, respectively.
The bottleneck for the robustness is located between the stations FLP and
LU, the 7th and 8th station on the stretch from Malmö to Hallsberg; the
bottleneck robustness is 300 seconds. The train ϕ departs Malmö at 10:57:58
and arrives in Hallsberg at 17:53:24. This results in a travel time of 6 hours
and 55 minutes.

4.2 Variation of Time Windows

Intuitively, reducing the time windows for allowed departures from Malmö and
allowed arrivals at Hallsberg will lead to less robust train paths: fewer train
paths will be feasible, thus, a former optimal train path might no longer be
available, but all other paths have smaller or equal robustness. Moreover, the
temporal location of the time windows is important, that is, the same sized
time windows will lead to train paths of different robustness depending on
the time of day, as the existing congestion in the train network varies. In this
subsection, we investigate the relation between time window size and resulting
train path robustness.

In the first set of experiments we fix the earliest departure time from Malmö
(to 07:00, as in Section 4.1) and vary the latest possible arrival time in Halls-
berg. We start with the latest possible arrival time at 24:00 and reduce it in
steps of 120 seconds until no feasible train path can be found. The result is
shown in Figure 4: a latest arrival time in Hallsberg between 17:52 and 24:00

Table 2 Station number, station code, and number of train departures for all stations on
the stretch from Malmö to Hallsberg on February 24, 2015. S=station#, C=station code,
D=# departures

S C D S C D S C D
1 MGB 145 27 TUN 47 53 RAS 28
2 AL 140 28 KR 47 54 FRD 28

3 BLV 140 29 ÄH 46 55 GP 28
4 ÅK 139 30 DIS 46 56 TNS1 29

5 ÅKN 139 31 DIÖ 46 57 TNS 29
6 HJP 139 32 ERA 46 58 SMN 32
7 FLP 138 33 VS 46 59 BX 32
8 LU 82 34 BLD 46 60 LKN 32
9 THL 83 35 AV 34 61 MY 33
10 STB 83 36 GÅP 34 62 SKN 34

11 Ö 82 37 MO 32 63 FGL 34
12 DAT 82 38 LNS 32 64 MOT 11

13 E 82 39 GRD 32 65 ÖNA 11
14 SG 82 40 LH 32 66 D 24

15 HÖ 70 41 RK 31 67 GO 23

16 TÖ 69 42 SY 31 68 JHO 23

17 VÄD 69 43 AHM 31 69 MDM L3 23

18 SÖLA 69 44 SÄ 31 70 MDM 23
19 MLB 68 45 UTP 30 71 RH L3 23
20 HM 47 46 BDF 30 72 RH 23
21 HM2 47 47 GT 29 73 Å L 25
22 BL 47 48 N 35 74 Å 25
23 MUD 47 49 GMP 30 75 SKMS 25
24 HV 47 50 VIM 30 76 HRBG -
25 O 47 51 FLS 29
26 O1 47 52 ANY 28

allows to insert a train path with robustness of 300 seconds, a latest arrival
time between 16:04 and 17:50 allows to insert a train path with robustness of
147 seconds. The earliest feasible solution, which we obtained by running our
algorithm with a resolution up to seconds, has an arrival time of 16:00:56 at
Hallsberg.

If we could simply insert the train at 7 AM and it could run uninterrupted,
it would arrive in Hallsberg at 11:44. Thus, the earliest feasible train path
arrives more than 4 hours after this theoretical earliest arrival. This gap is
caused by two factors: morning rush hour in the urban region around Malmö,
and network congestion during daytime (due to which the train often needs
to wait on sidings). During the morning rush hour between 7 and 9 there
exist only five feasible time gaps of 6 minutes (which allow to keep the critical
distance of 3 minutes to both the preceding and the succeeding train) between
the two stations Arlöv and Burlöv just North of Malmö. In fact, when we
consider stop pattern and speed of the existing trains, also these five gaps
disappear: there is no feasible path that leaves Malmö before 9:00.

In the second set of experiments we fix the latest arrival time at Hallsberg
(to 19:00) and vary the earliest possible departure time from Malmö. We start
with the earliest possible departure time at 00:30 and increase it in steps of

(a)

(b)

Fig. 3 Space/time representation of the railway timetable: existing trains are shown in
blue, red and light blue denote the interval borders for ϕ. To obtain maximum robustness
ϕ runs in the center of the so defined corridor. (b) depicts the stretch from Malmö (MGB)
to BLD, (a) depicts the stretch from VS (followed by BLD) to Hallsberg (HRBG).

120 seconds until no feasible train path can be found. The result is shown
in Figure 5: the robustness associated with a possible departure time varies
significantly more than with the latest arrival time in Hallsberg, for a departure
at 00:30 a train path with robustness of 1400 seconds (ca. 23 minutes) can be
obtained. For the first set of departure times, ϕ may run during the night,
mostly undisturbed by other trains. The robustness of the best found path

Fig. 4 Robustness of the computed train path depending on the latest possible arrival time
in Hallsberg.

Fig. 5 Robustness of the computed train path depending on the earliest possible departure
time in Malmö.

reduces dramatically for a start time between 03:00 and 04:00: from 1149
seconds at 03:20 to 300 seconds at 04:00. This is, again, caused by congestion
on the stretch between Malmö and Lund: between 01:00 and 04:00 one to three
other trains travel on the stretch, in the hour from 04:00 to 05:00 the traffic
increases to 11 trains per hour.

If we consider the variation of the arrival time in Hallsberg, all runs with a
latest arrival time between 17:50 and 24:00 yield feasible solutions with iden-
tical robustness, however, they do not share the same path. The bottleneck is
the same for all solutions, but the remainder of the paths differs. Several paths
with different arrival times at Hallsberg between 18:00 and 20:00 all use the
same bottleneck section. As our algorithm only accounts for the bottleneck,
all these paths (with a feasible arrival time) are equally good solutions. By
reducing the latest possible arrival time, some of the paths become infeasible,
and the algorithm outputs a different path. We consider the problem of choos-
ing the “best” path out of several feasible paths with the same bottleneck in
Section 6.

(a) (b)

Fig. 6 Existing trains between station s and station s+1 are shown in blue, the earliest and
latest possible departure for an inserted train is shown in red (limited by the safety distance
to the existing trains shown in green). The distance between these two red lines defines
the robustness of this section of the train path. (a) A slower train (right) obtains a higher
robustness than a faster train (left). (b) A faster train (left) obtains a higher robustness
than a slower train (right).

Another observation, from both Figure 4 and Figure 5, is that there are
large plateaus in the step function. That is, increasing the time window size
does not necessarily—and will in fact often not—result in a train path with
increased robustness

4.3 Variation of Train Type

In our base scenario in Subsection 4.1 we used a train of type GR421410,
a freight train with a maximum weight of 1400 tons, a maximum speed of
100km/h, and multiple locomotives of type Rc4. Using different train types,
with different maximum speed and maximum weight restrictions, results in
different runtimes for the train from station to station. Both a slower and a
faster train might lead to train paths with better robustness, depending on the
speed pattern of the already existing trains, see Figure 6. Recall that in our
model all trains always run with the maximum allowed speed. Using a faster
train might lead to an earlier arrival at a station, which will in turn open up
train path departure possibilities from that station that were not an option for
a later arriving, slower train. Moreover, if the freight train is not restricted by
other existing trains, a faster train will automatically obtain a shorter travel
time and an earlier arrival time at the final station.

To investigate the sensitivity of a train path’s robustness, we analyze nine
train types, see Table 3 for an overview of their attributes. All of these types
operate currently on the considered stretch, and we consider them a good
representation of all the train types operating between Malmö and Hallsberg.

For each train type, we allowed a latest arrival time at 18:00, and then
reduced this time stepwise by intervals of 45 minutes. The resulting robustness
of train paths found by our algorithm is given in Table 4.

The first five trains obtain paths with quite similar robustness, if we com-
pare the travel time to our train from the base scenario (GR421410), trains
GB201310 and GB402010 have a 139 seconds longer runtime between Malmö
and Hallsberg, train GT421209 has a 2300 seconds longer runtime, and train
GR401608 has a 4360 seconds longer runtime. On the other hand, trains
GR400710 and GR401409 take 22 seconds less than GR421410, for the two

Table 3 Train types, maximum speed, and maximum weight.

train type ID train type speed (km/h) cargo weight (t)

GB201310 freight 100 1300
GB402010 freight 100 2000
GR400710 freight 100 700
GR401409 freight 90 1400
GR421410 freight 100 1400
GT421209 freight 90 1200
GR401608 freight 80 1600
PX2-2000 passenger 200 -
PX610016 passenger 160 -

Table 4 Train type and achieved robustness for different latest arrival times at Hallsberg.

15:00 15:45 16:30 17:15 18:00

GB201310 - - 146 146 300
GB402010 - - 146 146 300
GR400710 - - 147 147 300
GR401409 - - 147 147 300
GR421410 - - 147 147 300
GT421209 - - 97 97 228
GR401608 - - - 15 26
PX2-2000 107 107 230 230 272
PX610016 107 107 238 238 277

passenger train types the difference is even larger: PX2-2000 and PX610016
need 6753 and 5546 seconds, respectively, less than the train from the base
scenario.

The faster passenger trains obtain feasible train paths also for a latest
arrival time at 15:00 and 15:45, on the other hand, the robustness of the
obtained passenger train paths is not consistently better than that of freight
trains: for arrival at 18:00 the best train path for passenger trains is 272 an
277, while freight trains yield a train path with 300 seconds robustness.

We take a more detailed look into this difference in robustness: in Figure 7
we compare the earliest and latest possible train paths for the PX2-2000 and
the GR421410 at the bottleneck, which for both occurs at the same station,
FLP, between the same preceding and succeeding train. The main difference in
robustness is not caused by the latest possible departure time (the light blue
lines nearly coincide at station FLP), but by the earliest possible departure
time. The earliest possible departure time is defined by the preceding train.
This train is slower than both considered trains, thus, the slower of the two
trains, GR421410, may depart earlier to keep the safety distance to the pre-
ceding train than the faster passenger train. Thus, the resulting robustness at
the bottleneck is higher for the freight train.

Fig. 7 Earliest and latest possible train path of the passenger train PX2-2000 and the freight
train GR421410 (bold lines) for the bottleneck shown in red and light blue, respectively. All
existing trains in the time table are shown in dark blue.

Fig. 8 Maximum bottleneck robustness of the freight train obtained for all days fo the 2015
annual time table, except for April 3, 2015 - April 6, 2015 and July 6, 2015 - August 9, 2015.

(a) (b)

Fig. 9 Number of trains per day and robustness of the inserted freight train path shown in
blue and green, respectively. (a) In the interval January 11-February 21, 2015, (b) for the
complete period of the 2015 annual time table.

4.4 Variation of Number of Train Departures in the Network

So far we used the time table of Tuesday, February 24, 2015 for our experi-
ments. In this subsection, we analyze the impact of different days with different
number of trains and time tables on the robustness of the train path of our
added freight train. We analyze all days in the 2015 annual time table (Decem-
ber 15, 2014 to December 09, 2015) with the standard time window of 06:00
to 18:00. Figure 8 shows the maximum bottleneck robustness for our inserted
freight train for all days of the 2015 annual time table (some dates (38 days)
were excluded due to incomplete input data).

When we compare the number of existing trains in the time table on a
specific day and the robustness obtained for the inserted freight train, we can
observe a clear correlation, see Figure 9: on days with a higher number of
existing trains (usually weekdays) the maximum bottleneck robust path is less
robust than on days with fewer existing trains (usually weekends). In Fig-
ure 9(a) we can observe some exceptions to this rule in the two first weeks,
thus, the general statement that more existing trains in the time table will al-
ways lead to a lower bottleneck value is not correct. To study the relation more

Fig. 10 Robustness over number of trains in the time table. Actual data points, given by
days from the 2015 annual time table, are shown in orange, the linear function obtained by
regression analysis is shown in black.

closely, we performed a linear regression analysis; for the plot of both all single
data points and the resulting regression line see Figure 10. We obtained a lin-
ear function with negative slope, which underlines the aforementioned trend of
more existing trains in the time table leading to a lower bottleneck robustness;
and an R2 value of 0.7091. To study the existing variance, we focussed on two
outlier data points, shown with a blue frame in Figure 10 (the two data points
overlap): January 14 and January 21, 2015, both days are Wednesdays. We
compared these two days with the Wednesday of the succeeding week, Jan-
uary 28; see Figure 9(a) for the number of existing trains and the resulting
robustness of the inserted freight train on these three dates. When comparing
the train path our algorithm obtains for the inserted freight trains on January
14, 21 and 28, we observed that the output train path of January 14 and 21 is
blocked by another train on January 28. Thus, the algorithm outputs another
(in this scenario best) train path, with the bottleneck located at station FLP
(Flackarp), see Figure 11. That is, the existence of a single additional train
reduces the robustness of the inserted train path significantly. This explains
the relatively low R2 value we obtained. The general trend of more existing
trains often yielding a train path with lower robustness holds.

Finally, we consider all weekdays and all Tuesdays, to justify our choice
of February 24, 2015 as a representative day of the 2015 annual time table.
Figure 12(a) shows the number of existing trains per day and the robustness
of the train path obtained by our algorithm for all weekdays (with all public
holidays omitted), Figure 12(b) shows the same information for all Tuesdays
only of the same time period.

As described, the robustness for the inserted train path varies significantly—
and the existence of one additional train may have a large impact on the ro-
bustness. We observe February 24 to be representative for the robustness range
on the majority of weekdays in the 2015 annual time table.

(a) (b)

Fig. 11 Analysis of the bottleneck of the inserted train path on January 28. The robustness
on that day is 300 seconds, and the bottleneck occurs at station FLP (the last station before
Lund). (a) and (b) show the earliest and latest possible train paths for the inserted freight
train (in red and light blue) on January 28 and January 21, respectively. The path we obtain
for January 21 is blocked by another, existing train on January 28, thus, we cannot insert
the train in the same gap.

(a) (b)

Fig. 12 Number of trains per day and robustness of the inserted freight train path shown
in blue and green, respectively. (a) For all tuesdays and (b) for all weekdays of the 2015
annual time table.

5 Analysis: Runtime and Graph Size

Obviously, our algorithm is a variant of Dijkstra’s algorithm and, thus, runs
in O(|V | log |V |+ |E|) on a given graph G = (V,E). To analyze the runtime of
our algorithm we have to determine the number of vertices and edges in our
constructed graph. These values depend on the number of stations, |Sϕ|, and
on the number of existing trains in the time table, |T |. we yield:

|V | ≤ |Sϕ|+ |T | ·
|Sϕ|∑
k=1

k = |Sϕ|+
|T | · |Sϕ| · (|Sϕ|+ 1)

2
(3)

Because each vertex at station s has at most one directed edge to a vertex on
s + 1 and one directed edge to a succeeding vertex on s, we have |E| ≤ 2|V |.

(a) (b)

Fig. 13 Number of vertices over number of trains: (a) data points for different days, (b)
comparison for different train types.

Consequently

(|V | log |V |+ |E|) ≤ (|V | · (2 + log |V |) (4)

which yields a runtime of O(|Sϕ|2|T | log(|Sϕ|2|T |)).
While this reflects the worst case upper bound, this bound is not tight and

the postprocessing step described in Subsection 3.1 significantly reduces the
number of vertices in our experiments. For our base scenario with |Sϕ| = 76
and |T | = 251 Equation (3) yields an upper bound of 734502 on the number
of vertices. However, we actually only have |V | = 6948, that is, the inequality
really includes a lot of slack, and after the postprocessing step, we are left with
only |V | = 3259 (less than half of the original vertices), which is significantly
smaller than the given upper bound. This reduction is highlighted in Figure 13:
the number of vertices actually decreases with the number of trains, this holds
for different train types as shown in Figure 13(b).

6 Note on an Improved Algorithm for the “Best” Bottleneck Train
Path

The algorithm presented in Section 3.2, and analyzed in detail in Section 4, has
one obvious drawback: We only care about the robustness at the bottleneck,
the rest of the train path is not optimized, we only know that nowhere along
the path the bottleneck robustness is undercut. Thus, two train paths over five
stations with robustness of 150, 150, 150, 150, 150 and 350, 300, 150, 350, 400
at the stations are equally good, and our algorithm might output the former.
Obviously, when we actually want to insert a freight train that influences the
existing trains as little as possible, we would prefer the latter.

We can easily adapt our algorithm to reflect this choice by increasing our
storage complexity: We store a vector, R, with the robustness at all stations
along the path. We still update the path in case it allows for a higher bottleneck
robustness, but, if we found another path with the same bottleneck robustness
for which the vector R is lexicographical larger than the vector R for the old
path, we update our chosen path as well. See Algorithm 2 for the pseudocode
of this improved algorithm.

Algorithm 2: Best Maximum Bottleneck Path

INPUT : Directed graph G, edge weights c : E(G)→ R+, start vertex s ∈ V (G).
OUTPUT: Maximum bottleneck path from s to all vertices v ∈ V (G), which

maximizes the second smallest robustness, third smallest robustness
etc., and their value.

1 More precisely: ∀v ∈ V (G):
2 r(v) - the value of a maximum bottleneck s-v-path.
3 p(v) - the predecessor of v on a maximum bottleneck s-v-path.
4 R(v) = (rv,1, . . . , rv,M) - a vector of the robustness at all stations along a maximum

bottleneck s-v-path (except for station 0).
5 1. Set r(s) :=∞, r(v) := 0 ∀v ∈ V (G) \ {s}, R := ∅.
6 rv,i =∞∀v ∈ V (G) \ {s}, ∀i ∈ {1, . . . ,M}.
7 2. Find a vertex v ∈ V (G) \R with r(v) = maxw∈V (G)\R r(w).

8 3. Set R := R ∪ {v}.
9 4. for ∀w ∈ V (G) \R with (v, w) ∈ E(G) do

10 if (r(w) < min{r(v), c((v, w))} then
11 Set r(w) = min{r(v), c((v, w))}.
12 p(w) = v.
13 Set R(w) to R(v) extended by c(v, w).

14 else if (r(w) = min{r(v), c((v, w))} then
15 if (R(v) >lex R(w)) then
16 p(w) = v.
17 Set R(w) to R(v) extended by c(v, w).

18 5. if R 6= V (G) then
19 THEN GOTO 2

7 Conclusions and Outlook

We presented an algorithm that can be implemented to insert one additional
train in an existing timetable. The algorithms is fast and gives a satisfying
result in reasonable time for operational use.

In our test set of experiments, we solely used the maximum bottleneck
as objective. This is well-motivated from a robustness perspective, but can
easily be extended to account for other goodness measures; in particular, we
can easily account for the robustness on the path to and from the bottleneck
section by increasing our storage complexity. Moreover, preprocessing may be
applied to omit train paths with unwanted properties such as a travel time
exceeding the train driver’s maximum allowed working time. The study of
further objectives for FTI is left as future work.

As a heuristic for inserting several trains, the algorithm may be called
repeatedly. To obtain better algorithms for this scenario, we might study either
the offline or the online problem in which multiple additional train paths need
to be inserted within a time interval. Moreover, our approach allows for a
specific, defined speed of the inserted train, and if we allow a larger number
of allowed speeds (still a discrete set), this will increase the size of our graph.
Hence, it might be interesting to study other types of algorithms that allow a
continuous spectrum of train speed.

Acknowledgments

This research is a result of a collaboration between Linköping University and
Trafikverket, and part of the EU H2020 project Shift2Rail/ARCC (grant num-
ber 730813), and partially funded by Trafikverket (Dnr TRV 2016/75881). The
authors are grateful to Magnus Wahlborg (Trafikverket) for fruitful discussions
and Martin Aronsson (SICS RISE) for timetable data.

References

1. R. Burdett and E. Kozan. Techniques for inserting additional trains into existing timeta-
bles. Transportation Research Part B: Methodological, 43(8):821 – 836, 2009.

2. V. Cacchiani, A. Caprara, and P. Toth. Scheduling extra freight trains on railway
networks. Transportation Research Part B: Methodological, 44(2):215 – 231, 2010.

3. Commission of the European communities. Towards a rail network giving priority to
freight, 2007.

4. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269–271, 1959.

5. Eurostat. Railway transport - goods transported, by type of transport, 2017.
6. H. Flier. Optimization of railway operations: Algorithms, complexity, and models, 2011.
7. H. Flier, T. Graffagnino, and M. Nunkesser. Scheduling additional trains on dense

corridors. In 8th International Symposium on Experimental Algorithms (SEA 2009),
Dortmund, Germany, June 4-6, 2009, pages 149 –160, 2009.

8. M. Goerigk and A. Schöbel. Recovery-to-optimality: A new tow-stage approach to
robustness with an application to aperiodic timetabling. Computers & Operations Re-
search, 52:1–15, 2014.

9. I. A. Hansen and J. Pachl. Railway Timetable & Traffic: Analysis - Modelling - Simu-
lation. Eurailpress in DVV Media Group, 2nd edition edition, 2014.

10. L. Ingolotti, F. Barber, P. Tormos, A. Lova, M. A. Salido, and M. Abril. An Efficient
Method to Schedule New Trains on a Heavily Loaded Railway Network, pages 164–173.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

11. F. Khoshniyat and A. Peterson. Improving train service reliability by applying an
effective timetable robustness strategy. Journal of Intelligent Transportation Systems:
Technology, Planning, and Operations, 2017.

12. L. Kroon, D. Huisman, and G. Maróti. Optimisation models for railway timetabling.
In I. Hansen and J. Pachl, editors, Railway Timetable & Traffic, pages 135–154. Eurail-
press: Hamburg, Germany, 2008.

13. C. Liebchen. The first optimized railway timetable in practice. Transportation Science,
42(4):420–435, 2008.

14. M.Grimm. The analysis of congested infrastructure and capacity utilisation at trafikver-
ket. WIT Transactions on the Built Environment, 127, 2012.

15. M. Pollack. Letter to the editor—the maximum capacity through a network. Operations
Research, 8(5):733–73, 1960.

16. E. Solinen, G. Nicholson, and A. Peterson. A microscopic evaluation of railway timetable
robustness and critical points. Journal of Rail Transport Planning & Management 5,
2017.

17. J. Törnquist. Computer-based decision support for railway traffic scheduling and dis-
patching: A review of models and algorithms. OASIcs-OpenAccess Series in Informat-
ics, 2006.

18. Trafikanalys. Rail traffic 2016, 2017.
19. Trafikanalys. Railway transport 2017 quarter 3, 2017.
20. UIC. UIC code 406: Capacity. Technical Report 1st edition, International Union of

Railways, 2004.

	Introduction
	Notation and Preliminaries
	Maximum Bottleneck Robust Train Path
	Experimental Study: Malmö–Hallsberg
	Analysis: Runtime and Graph Size
	Note on an Improved Algorithm for the ``Best'' Bottleneck Train Path
	Conclusions and Outlook

